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Chapter 1

I'TRODUCTION

The electromagnetic coupling between a conducting body and an

aperture is an important problem. One of the studies is to

investigate the response of protected objects behind an

aperture-perforated metallic screen. The power transmitted through

the aperture from a source on a nearby object which is behind the

screen is also of interest. Situations of this nature arise in a

number of applications, e.g., microwave leakage through cracks in

shield walls of electronic equipment and electromagnetic penetration

into vehicles, aircraft, and ships. This penetration is through

windows or seams of doors to cables or other metallic objects.

In the past, the problem of electromagnetic coupling to an

infinitely long wire through an electrically small aperture [1] - [31

or through a narrow slot [41 has been studied. The problem of a narrow

slot passing by a finite-length wire without loads r51 or with loads [61

has also been investigated.

In this work, we consider more peneral problems for which an

aperture in an infinite conducting plane is backed by a conducting

body. The aperture and the conducting body are of arbitrary size and

shape. A moment method solution is developed for the equivalent

magnetic current in the aperture and the electric current on the
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conducting body. The solution is then applied to problems for which

the conducting body is a wire of finite length (with or without loads)

or of infinite length. The current distributions in the aperture and

on the wire can be used to calculate the power transmitted through the

aperture and other responses of the wire.

In Chapter 2, the general problem of a conducting body behind an

aperture is considered. The equivalence principle [7, Sec. 3-51,

boundary conditions, and moment method [81 are utilized to obtain a

pair of matrix equations. These equations are used to solve for the

current distributions in the aperture and on the conducting body.

In Chapter 3, we specialize the problem to an unloaded wire of

finite length behind an aperture of arbitrary size and shape.

Triangular patching is used to model the aperture. Pulse functions

are placed on the wire. Matrices in the pair of matrix equations

developed in Chapter 2 are evaluated. Numerical results are presented

and compared with those in [51.

In Chapter 4, the wire considered in Chapter 3 is extended to an

infinitely long wire. The expansion functions and matrices developed

in Chapter 3 are modified to include the effect of the infinite length

of the wire. Numerical results agree very well with the available

data in (1] - [4].

In Chapter 5, the problem is generalized to that of an

arbitrarily loaded wire behind an aperture. We modify the moment

method solution developed in Chapter 4 to include the reflection

effect from the loads of the wire. We then evaluate the power

*..%,I . m a ', *w'*.'..\, V '. '..,'..,'"""



transmitted through the aperture. The solution for a wire with

matched loads is used to obtain an equivalent circuit of the aperture

for the transmission line mode on an arbitrarily loaded wire.

Numerical results are presented and compared with those in [41 and

(6).

VIe summarize and conclude this study in Chapter 6.

Recommendations for further work are given. Appendix A presents

evaluations of some surface integrals used in Chapter 3. Fields

due to outward traveling TEM (transverse electromagnetic) currents are

derived in Appendix P. In Appendix C, we derive some integral

formulations used in Chapter 4. An equivalent circuit of an aperture

for the transmission line mode on a loaded wire is derived in Appendix

D.

Figuzes and tables are at the end of each chapter and appendix.



4

Chapter 2

FORMULATION OF THE OENERAL PROBLEM

2.1. Problem Specification

The genezal configuration is given in Fig. 2.1. An

aperture-perforated infinite conducting plane of zero thickness

separates regions a and b. The size and share of the aperture are

arbitrary. In region a (y < 0), there are impressed sources

0i, Kia). In region b (y > 0), there are an arbitrarily shaped and

sized conducting body and impressed sources (Jib ib ). The material

in regions a and b is loss-free and homogeneous with permeabilities

(IaPb) and permittivities ( a, b). The aperture and the conducting

body are labeled A and B, respectively.

In this chapter, a movient method solution is developed to obtain

the equivalent magnetic current in the aperture and the electric

current on the conducting body.

.-. ... . q~~' ~V* * .*.*. * . . .. , * *
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2.2. Formula Derivation

We use the equivalence principle (?, Sec. 3-51 to divide the

problem into two parts, as shown in Fig. 2.2. The fields in region a

remain unchanged if the aperture is closed by a conducting surface and

an equivalent magnetic surface current sheet Ma is placed over the

aperture region where

V n x over A

n is the unit vector normal to the conducting plane and points toward

region b. Fa is the electric field over the aperture in region a.
-A

This equivalence is shown in Fig. 2.2(a). Similarly, the fields in

region b remain unchanged if the aperture is closed by a conducting

surface and a magnetic current sheet Mb is placed over the aperture

region where

bh

11b n x RA over A (2-2)

E is the electric field over A in region b. In addition, an electric

b ib ib
current J is induced on the conducting body by 1 , ji , and M

This equivalence is shown in Fig. 2.2(b). Therefore, the electric and

magnetic fields in region a are

Ea P_4 riA (2-3)

HR -a(.,a) + Hia (2-4)
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Htre, (E(a), H(Ma)) is the field from M4 , and (E,, is the

short-circuit field (field existing in the presence of the complete

conducting plane) from (Mia ia). Similarly, the fields in region b

are

b b(Mb ) + Eb(M + Eib (2-5)

b b b b ib '6
H = H (1 b) + H (j) + i  6)

Here, (Eb(Mb), Hb(Mb)) is the field from Mb, (Eb(j) Hb(j)) is the

ib ib ib
field from J, and (E , H ) is the short-circuit field from (W

N ib). Note that all fields are obtained with the aperture shorted.

We next appply boundary conditions to this problem. They are:

() the tangential elentric field is continuous across the aperture A,

(2) the tangential magnetic field is continuous across A, and (3) the

tangential electric field vanishes on the surface of the conducting
a ba

body B. The first condition implies that n x E - n x b in (2-1) and
-A - ;-A

(2-2). Therefore, a _ -rb . From now on we use M to represent Ma and

-M The other two conditions imply that

H a nHb o A (2-7)

-t b - on B (2-8)

where t denotes the component tangent to A or B. Substitution of

(2-4) - (2-6) into (2-7) and (2-R) gives

• " . .'. .,...',,.',., ~~~~~~... ... . . . . . ... ,. . .. . . .,' . , . . ." . - . .,. "-,-, ,- , , , , , ,
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H -- ( ) - a -_ i fib

H -on B (2-9.0)-t- -tt-

Here, the linearity of the operators is used to replace H (-M) by

-H b(E) and Eb (-) by -F (M). Fquations (2-9) and (2-10) are the

equations to solve for Y' and J.

We next use the moment method W81 to reduce (2-9) and (2-10) to

matrix equations. For this, we define expansion functions IM-

n-,,2,...,NAI over A and j n ; n=1,2,...,NBI over P to approximate M

and J, respectively. That is,

NArN- V. N . (2-11)
--I j n ""T n

n

NB
" j I j M(2-12)

n-1

We define testing functions I ; mu.1,2,...,NAI over A and {3

rmnI ,2,...,XBI over B and a symmetric product

<F , F > S F "f dSl  (2-1)
-l -2SJ- -2

where S denotes surface A or B. Now, substituting (2-il) and (2-12)

into (2-9), taking the symmetric product over A with each . , and then

using the linearity of the symmetric product, we obtain the first

matrix equation. Similarly, substituting (2-11) and (2-12) into

~u. . . . . ,-.- ,.- -. . .. , .. : ,. . , '...p, . .
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(2-10), taking the symmetric product over B with each J , and then-in

using the linearity of the symmetric product, we obtain the second

matrix equation. The two matrix equations are

[yab + Y I + rT I .i 1ib (2-14)

% + [ZI -I (2-15)

Here,

ryae )> (2ryal = [ <' 'H()A]NAxNA (2-16)

ryh] - F <-r" ?,b(,7 ')>A (2,1
-n ' --t -n NAxNA (2

b<A lh ( ,, )>

ET] = [ <r''  -,'(. n> A1Axi (2-18)ryi r _' -1 , nB (2-17)- -M -t-n A AxNA

-~ ib

I - <A , tx.,t A  (2-19)

[z] - <- , (i)>(-20)

< i>'l (2-21)

- [v . A1(2-24)
*i q > .VAxV

' ''V L(I, " , ,'V '- """", " - -'""-.r.._.-,.-"- .'.v i'.. ..v','-',,l-'.,; --.;,,t'. 'ww

i ~ ~ ~ - Ib i ! I ! ]r ; :,



I -r (2-25)

Thus (2-14) and (2-15) are the matrix equations to solve for thp

coefficients (V ,I ) in (2-11) and (2-12). lie call [ya ani fyb the
nn

admittance matrices for regions a and h, respectively. [T1 and r ]

are the coupling matrices, [Z] the impedance matrix , and ia Tih

and V the source vectors. V and I are the unknown coefficient

vectors to be determined.

If the sources in region a were to radiate in the homogeneous

medium characterized by ( aca) and if the sources in region b were

to radiate in the homogeneous medium characterized by (Ibeb), the

fields in (2-16) - (2-20) would be given by

Ll -j . V.l 1 1-a,b (2-26)

Eb(j ) " -jwAb - (2-27)
-n ~*n n

jjb(J ) -- Vx A' (2-29)
bI

fb(,h( Vx (2-2(
-- n b --n

where

*r El1  P1 .r', G(k1  z, r') W!~ l-a,b (2-30)

A

Ab G (r')G(kr, r') dS' (2-31)
-n bJJ -n-

B
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O - J- G'(kI, z, r') dS' la,b (2-32)

A

b _ _ [ G(k r r') dS' (2-33)
n J jWFb b' -LP-

B

e-jk1 Ir-r_'

G(k , r') - 4Ir-r'l 1a,b (2-34)

Skl = 11 ,l 1-a,b (2-35)

Here, W is the anpular frequency. All fields are evaluated in a half

space with the aperture shorted.

'

If a Galerkin solution (i.e., M N , J -J ) is used, we have-n In -m "T-"

(yl] - [] 1-a,h (2-36)

[Z1 - [] (2-37)

[,iJ - -F1 (2-38)

where - denotes the transpose of a matrix. This will save us some

computations. If regions a and b are filled with the same medium

characterized by (11, E), we can remove the conducting plane and use

image theory [7, Sec. 3-41 to evaluate the matrices in (2-16) -

(2-23). They become

ya] .yb A 2 [ <A A (2-39)

-1' -t -- n)>A ]NAxNB-0

, T] d2 , , ."n *'. . " H -' >N. (2 -4



[ - < ,~( -- >--7 -.7,-7 -.F

I -t -n )>B NBX14A (2-41)

A

[Z] _ r <_3 E ( ,'n)>B ]N NB (2-42)"I -t --n BNRM

lia M 2 [ < T ,ioa > ] (2-43)

A A ob x

ib. 2 r <M oh> A,(2-44)
A NAxI

v ib _iob + F ob' > ](2-4x)

VI' U l ;t lB (2-45)

Here, H (J j') and 9(3 , 3' ) are the tangential fields due to
-t n - n -t-i -n

J plus its image J' located in region a. It (M ) and P, (M) are the
-n -t-n -t-n

tangential fields due to M ft. oa is the tangential field due to

(W , i). iob and b are the tangential fields due to (Jib

Mib), b ' is the tangential field due to the imape of (ib ib.

All the fields are evaluated in the space with the conducting plane

removed. They can he calculated by usinp (2-26) - (2-35) with

superscripts and subscripts (a,b) dropped, and J xeolaced by (J,J'n).
-h -n

4%
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~ib 
i

j INFINITE CONDUCTING
/MPLN

CONDUCTING
8 -*'B D

REGIONN b

(y<O) APERTURE

Fig. 2.1. Genezal problem.



-CONDUCTING PLANE

(APERTURE SHORTED)

REGION a

(a)

CONDUCTING PLANE

Im

-n 4- - -

REGION b

Fig. 2.2. Equivalence for the general problem * (a) E:quivalence for

region a. (b) Equival~ence fr region b.
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Chapter 3

APPLICATION TO THE PROBLEM OF AN UNLOADFD WIPE OF FINITE

LENGTH BEHIND AN APRTURR OF ARBITRARY SIZE AND SHAPF

3.1. Problem Specification

In this chapter, the general moment method solution developed in

Chapter 2 is specialized for the problem of an unloaded wire of finite

length behind an aperture of arbitrary size and shape. The problem

configuration is shown in Fig. 3.1. The space is filled with

loss-free homogeneous medium of permeability V and permittivity £ • A

straight thin wire of radius rB and length L is located at y-d and

points toward the z-direction. A plane wave is incident from region a

at an angle (0,o). For this excitation, we set the tangential

impressed field at a point (x,O,z) in the aperture as

Hi a - (H i oa u . 11i a u (3-)
-t x -x z -z

where

Hi ~ a  ( ijkaooine cos, °*zcoseo)
Hioa - (HioacosecosoHina ino)e 0 0 0 (3-2)
x 0

Hioa -Hioa s i oe Jk(xsine cSo0 0+.zcoqe0 ) (3-3)
Z 0
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Here, H ioa an ioa

and H are constants, and u and u are unit vectors in

the x and the z directions of the rectangular coordinate system. No

impressed sources exist in region b.
4'

An appropriate set of expansion functions and testing procedures

are needed to solve for the currents in the aperture and on the wire.

In this chapter and throughout the following chapters, a Galerkin

solution is utilized and, for simplicity, the same medium is assumed

in regions a and b. Therefore, we only need to specify the expansion

functions and use (2-39) - (2-45) to evaluate the matrices.

3.2. Magnetic Current Pxpansion Functions in the Aperture

In this section, we model the aperture by planar triangular

patching which has been used to model a surface in [9] - (13]. The

advantages of the triangular inatchinp are : (1) the ability to

conform closely to an arbitrarily shaped aperture, (2) the flexibility

of having greater densities on those portions of the aperture where

more resolution is desired, e.q., when the edge effect is concerned,

and (3) the scheme can be easily implemented on a computer. The

triangular patch scheme for the aperture is explained as follows.

First, assume that a suitable trianpulation is found to closely

approximate the aperture region. The trianpulation is defined by sets

of faces (patches), edges, and nodes, such as shown in Fig. 3.2. We

number the nodes and edges and specify the orientations of edges by
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arrows (e.g., edge I is from node 3 to node 4). We next define the

orientation of each face to be its normal direction, i.e., in the

y-direction of FiR. 3.1. As shown in Fig. 3.3, the current reference

direction across an internal (non-boundary) edge n is defined to he

the direction of the cross product of the edge orientation and the

face orientation. The conjoire.d triangles associated with edge n are

denoted by T and T , with the current reference direction from T to
n n

n

Next, we introduce local position vertors associated with edge n,

as shown in Fig. 3.4. Any point in triangle T+ can be designated by a
n

local position vector + defined with respect to the free node (node

not on edge n) of T+ . Similarly, any point in T can be designated
n n

by f-n" Tote that pn is defined away from the free node of Tn , and

2. is toward the free node of T-. r is the plobal position vector of a
n

point in the aperture.

Now, we define the expansion functions in the aperture, which

were originally proposed in f1i4. For each internal edge n, the

magnetic current expansion function is defined as

++

n-n rinT

2An

1 0-
M (r) - n-n r in - (3-4)
-n 2A - n

n

0 elsewhere

i~E
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Here, 1 is the length of edge n, and A+  and A are the areas of
n n n

conjoined triangles T and T-.n n

In the following, we discuss some properties of 4 defined in--n

(3-4), and ensure that they are uniquely suited to be the magnetic

current expansion functions in the aDerture.

() M has no component normal to the boundary edges (excluding the

common edge) of the conjoined triangles T+ and T-. Hence, no
n n

line charges exist along these boundary edges. In addition, the

component of 11M normal to edge n is the constant I (see4-n

Fig. 3.5) and is continuous across edge n. This implies that

edge n is also free of line charge.

(2) The surface magnetic charge density is defined as

V.M
m = -

n -jW

n rin T
JiA - n

n

O elsewhere (3-5)

Therefore, the net charge in the conjoined triangles is zero.

4' ' .. . ....": "' J ,€ , _ i.. ' ". .. , <'.. ,,... .. .-.-. '.,
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(3) The set of functions M defined for all the internal edges is--n

sufficient to represent the magnetic current anywhere in the

aperture. Any current in the aperture can be well approximated

by a superposition of these expansion functions. At any

boundary edge of the aperture, the normal component of magnetic

current must vanish, while the tangential component can be

represented by a linear combination of the expansion functions

associated with the two internal edges of the pertinent

triangle. Therefore, we need not and should not define

expansion functions for the boundary edges.

Thus, the total number of expansion functions over A, NA in

(2-11), is equal to the total number of internal edges of the

aperture. In addition, since the normal component of M across edge n

is I, V in (2-i 1) is interpreted as the normal component of the
n

magnetic current density crossing edge n.

3.3. Flectric Current Expansion Functions on the Wire

We make the following approximations for the current on the wire

(1) The current is assumed to flow only in the axial direction of

the wire, (2) the current is approximated by a filament of current on

the axis of the wire and depends only on the axial length variable,

and (3) the boundary condition (2-10) is applied only to the axial

component of the electric field at the surface of the wire. For



,* -... . - a b h - = . .. - . o. . *7 _ -.7 . .- o-. -- . l . * .-- -- .~. :-2'. 7 ;o'. q7-.

19

simplicity, the wire is equally divided into NIB subsections of length

2aB .  Pulse functions are used over each subsection. The expansion

functions for the current J on the wire are then defined as

J - u P(z-z ) -,,. B L I aB < z < L(36-'n n - -_ _ -- %(3-6)

9 h z n 2 B] 043~

-,z < z)< Z
n- n+

n

10 ,elsewhere (3-7)

where z n-, z n, and z n+are the z-coordinates of the starting point,

midpoint, and termination point of the nth subsection. The subsections

are enumerated from z - -L/2 +a to 1/2 - a . Note that by (3-6) the

current is ensured to be zero at the ends of the wire.

3.4. Matrix Evaluation

(A) Evaluation of Admittance 'atrix [Ya +yb

Accozding to the definition, the admittance matrix Fya~yb is

independent of excitations applied to the system and can be evaluated

as if the wire were not present. Therefore the matrix is the same as

that evaluated in f13]. We summarize the evaluation as follows.

.9
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Substituting (2-26), (2-30), (2-32), (3-4), and (3-5) into

(2-39), we have

Y a yb ,jW * F dS + 4 r-1 -- Vfn dS

Iml111 JJ f m n II Tn
A

4jMFdS - 4  D V .d,,

Wij -m'--n jj n -in

1S 1" fS --F
- 4jw [f ,., - s + I -n-s 1

2A 2A
M+ n M m

in m

- 4[ m n d.' dm
4

+ "- i

T T-
m In

Z 2jw 1 F0+.F (r+) + 0'--F (rc-)!
* 'n-m --n - n -m -n -i

- 41 (ID (rC+) - P (I -)] (3-)
i n n- ra

where

F( C±) . C ',, (r') C(k, r , r') dSO (3-9)-n -- n- -- m

T +,-
n n.4'

(re ) - r ( G(k, 'c r') ds' (3-10)
mn -' J _ -n -

.T +

ni n

and r m are, respectively, the local and global position vectors
+

of the centroids of T-. The integrals are approximated by sampling.
m

the integrands at the centroilds in (3-8).

. 4 , , . .-. . . .. ,. , , , ...- , -,.- #..-.-. . ... -. ,. , . -;.-. -. ' .-.. .,.-- .... . -
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To evaluate F (r) and 0 (r) we proceed face by face for each
nf nf 

triangle. As shown in Fir. 3.6, T is an observation triangle and T
p q

a source triangle. Nodes of T are designated by 1, 2, and 3, and
q

lengths of edges of T are 11, 12' and 1 3 The local position vectors
q

of a source point in T , pl, p, and divide T into three subareas
q ' L9 3q

Al, A2 , and A 3  The global position vectors of the source point and

the three nodes of T are r', 4 , r^, an r , respectively. Wie now
q--

define area coordinates (M,n,g) as

A
A2 (3-i)

q

A
-n A 3 (3-12)

Aq

A
-- I - E- n(3-13)

q

where A is the area of T o The relationships among the area
q q

coordinates and position vectors are

- + (r' - r ) i = 1, 2, 3 (3-14)

r' = 1 + r 2+ rr3 (3-193)

-i -

In (3-14), the positive sign is used if the current reference

direction of edge i is away from T , and the negative sign is used if
q

the current reference direction is toward T . 7ote, for simplicity,
q

+ +superscripts * of " and T- are dropped.
- -- i q
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Using the area coordinates, we can transform any surface integral

over T into a double line integral by the following formula,
q

iff(r')dS' - 2Aq j f((1..-.n)r 14Er 4nr )dEcM (3-16)

T fI -0f=O
q

Therefore, the electric vector potential Fpq  and magnetic scalar
-i

potential D pq at the centroid rc of triangle T due to edge i of
i - p

source triangle T can be evaluated as follows.
q

By (3-4), (3-9), and (3-1'1) - (3-16), we have the vector

potential

-p M' (r') G(k, rc, r') dS'
-i "f -- -p-

T
q

1 r c
-Li . G(k, r ,r') ds'
2Aq -f --

T
q

- 2q 11 [(1-n)r "2 nr-r -C(k, )ds'
2A J -1 -2--i p

T
q

±1 ±iE[ (1.2-I )Ipq%(.j3_-IJ fl pq(.L'n --r )I ]  1-1 ?,3 (3-17)

where

Ipq fO J J G pkR)d dn (-18)

n go Eio
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IPq - J J G(k,R )d~dn  (3-20)

q0
S n-ifo p

1 pq . I flnG(kP )d~d) (3-20)

1-1Y-0 EJ-0

-jkR

G(k, R ) e P (3-21)p 4R
P

R - I1r - (1 - &L- n)2 - - n r (3-22)
p -p

Equations (3-18) - (3-20) are evaluated in Appendix A. Similarly, by

(3-5) and (3-10) - (3-16), we have the scalar potential

~pq ._ ~r (r') G(k, rC, r)dS'

q
A+'

- i.JfG(k, rC )dSO

T

T.2 1 Ipq in ,2,3 (3-23)
jiW- i

*. Again, if the current reference direction of edpe i is away from T ,
* q

the positive sign in (3-17) and the negative sign in (3-23) are used.

If the direction is toward T , the negative sign in (3-17) and the
q

positive sign in (3-23) are used. Note that (3-17) and (3-23) are
defined only for the edge which is not a boundary edge of the

aperture. If edge i is a boundary edge, 4 q =$ pq  O.
aprtre

. . . . . . . , . . . . . . . . , .,4,. . ....-... , ..1( -.-. . .'. . .,.-
.,! -/ ', ,, '-'P , ,."L ' t r:,:, ,_ , , ":, , , , - r
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Finally, F (1C±) and D (rc) in (3-9) and (3-10) can be obtained
n --m n -i

from Fpq and Pq in (3-17) and (3-23) by transferring the local index
-1 1

i (i - 1, 2, 3) to its corresponding global index n (n 1, 2,...,

NA). Similarly, the quantity 1 AC
+ in (3-9) can be evaluated by using

face to face procedure and local index. The evaluation of the

admittance matrix is now complete.

(B) Evaluation of Impedance 7atrix r__

The tangential electric field at an observation point along the

surface of the wire due to the axial current J at (O,d,z') plus its

image J' n-J at (0,-d,z') can be obtained by (2-27), (2-31), (2-33),

and (2-34). It is

Z -n - n 47T f ( -jk -jkR'•E (j J') - 2 ,(e e )dz'

B

f dJ (z') (-jkP -jkR'
en e ) dz'

47jwo 3z dz' R Re

n-i ,2,.. . ,TB (3-24)

Here,

R z - + r2 (3-25)

H' z z')2 (2d)2  (3-26)

J ,,2,

.4 -* " " . -', . . ."" " ""." ' """""' . .." """""f $ " ' '", 'V" """.'".'''''' . -,., '-." .'"" "''''-'- . .. '". .'''"% ,
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are the distances from the observation point to the source point and

to the image of the source point, respectively. Substituting (3-6)

and (3-24) into (2-42) and using [8, Eq. (4-20)], we obtain the

impedance matrix elements

z - jwpAl Al n f P(z ,z , )T ( z , 2d)]mn m n - m n r-Mn

.I. L~j~m+9 r l~zm+P z 2d)

--,(z ,z r, ) + _( z ,z2d)
m n- B -m - n-

- *(z ,z r) + i(z ,z 2d) (3-27)

- m- Bn+  - r- n+9

+ (z ,z ,, r P (z ,z ,2d)] M, nml,2,...,IB

where Al -Al 2aI and
in n B

Al
fn 2 -jk z -z')2 +p2

z, n n , 2 2 dz' (3-28)

__Al ( +z P
' z _ n-

n 2

has been evaluated in 115].

• -- . . _ .._ . - - , -. . % - . . .. . . . . . . . . - . " . - .. . . .. ' . , , j '' .j ' , -'
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(C) Evaluation of Coupling Matrices IT and

The tangential magnetic field at a point (x,O,z) in the aperture

due to a z- directed current 3 on the wire at y-d plus its image '
-rTi -n

is

H 3( ) 2H1 (J )

-2d H (J) u (3-29)
= n -- -n -x

Substitution of (3-4) and (3-29) into (2-40) gives

A *u H (J)H

mn m +2 A - X2d
+ "T 2 d 2 mT- A F2d

m m

^cO(; x ) -H(-J ;c-)

dl Zdm [- n m1 m - (3-30)
F(X +2Jc -)2

+4] +- o

Here, fc +- and xc + are the x-components of position vectors c  and
m m --m

r c± ,  respectively. HO(J; r ) is the -component of the magnetic

field due to J at the centroid r

The magnetic field H (J c) due to J defined in (3-6) is
-n - -n

H-- .. "-

pap '.
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](ck. 2 +d2 0kr ±,ra (,Jk + I )e - " dz'
41 r',I 2 I* r-r_ 13

., Im "M

Aln

n + _ J 1 -jkr±

47 (r± ) 2  ( 3r e )3
(mn mn)

where

J C±2 2 C- 2*n (m + d +(sz m  n) (3-32)

is the distance between the centroid associated with edge m of the

aperture and the midpoint of subsection n of the wire. z c  is the z-
m

component of r 0. Substituting (3-31) into (3-30), we obtain

dl 61 -Jkr +

mn 41r m (rmn + m)3e

;T + j + ]e mn

mn ) n

m-j,2,...,NA n-i,2,...,NB (3-33)

Since Calerkin's solution is used, rTl can be obtained by r - - [T1.

A
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(D) Evaluation of Source Vectors Iia -ib, and Vb

Since there is no excitation from region b of Fig. 3.1,

(2-44) and (2-45) give

-ib ibI - V a 0 (3-34)

Substitution of (3-1) - (3-4) into (2-43) gives

Ilia . I[ ( f '1 1ioa dS+ ioa iad
In ~ A j -t ALij t

Am  + AnT T-'
mi m

z [1[c+fioa(rc*) + V +Hios(rc+)
m IM X -7n m z -

io + C-..ioa, c-,
+ c-Hia(rc-) . ,c1. oar) ( ,2,...,,TA (3-35)

Im X -M I Z -

Here,

Hioa(rc± )  " ioa
x - - (H °acosO cos - 0sine)

jk(xc±sinO cos$ +z C-coae )e m o 0 M 0 (3-36)

ioa(Z) jk(xC sine cos +z cose

z + 0 (3-37)

and z are the 3-components of c_+and r , respectively.
-- --
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By solving (2-14) and (2-15) with matrices evaluated above, we

can obtain the current distributions in the aperture and on the wire.

3-.5. Numerical Results

In this section, numerical results are presented for the magnetic

current distribution in the aperture and the electric current

distribution on the wire. Numerical results for narrow slots are

available in the literature for the problem considered in this

chapter. We therefore perform computations for a narrow slot backed

by an unloaded wire of finite length with plane wave incidence. As we

will see, our results agree very well with those in [5].

The slot has length L and width W and is centered at (x ,O,0).
a a c

The wire has length L and radius r B and is located at y-d. A plane

wave is normally incident with Iti oa= ampere/meter. Figure 3.7 shows
x

the triangulation used for the slot, where NA, ?INODE, NEDGE, and NFACE

are the numbers of unknowns, nodes, edges, and faces of the slot,

respectively.

For the case of L /X -0.5, W /A -0.05, r 1A -0.001, and L
a a 1

A-O.5, Fir. 3.8 shows the comparison of our results for the total

t1 x-directed manetic current M in the slot with those in r51. Figure

3.9 shows the comparison of the electric current I on the wire. They

both have very good agreement. Figure 3.10 shows the electric current

on the wire for the case of L /X -0.5, W /aX -0.05, Xc0.., j/X -0.25,a a
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70

r /O.001, and L/ X=i.o. Figuze 3.11 shows the electric current onB

the wire fox the case of L / X-1 . 0 , / iX=.05, xn / X-0.25, I/ X=O.25,

rS / X- . O0 1 , and L /A=1.O. Again, our results for these ceses npree

very well with those in [51. Here, \IM meter is chosen as the

wavelength in the computation. tote, the opposite sir.n of electric

current on the wire in our results is dule to the choice of a different

coordinate system from that in [51.

'",
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SINFINITE CODCIGPLANE

*-CONDUCTING

|ET R

\ NFINITE COD CTINUPLAN

2

Fig. 3.1. An unloaded wire of finite length behind an aperture.

, .. .,.~ _ ,______ __ .,- . .y . ,._ _



32

EG O EDGE

(NO RMAL NODE

6 8 9

FACE ORIENTATION OF EDGE

Fig. 3.2. Triqnnplation example.

EGE ORIENTATION

~FACE ORIENTATION
T+(NORMAL TO THE FACE

nPOINTS OUT OF THE
PAPER)

CURRENT REFERENCE DIRECTION

Fig. 3.3. Relationship amon, face orientatLon, edpe orientation, and

current refeience direction acioss ed e n.

..A, o ' . .. . . - . . - .. . - ., - .. . , - o '- . . . ', ,
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+,I EDGEORIENTATION

~T1A_ n
0 (ORIGIN OF THE GLOBAL COORDINATES)

Fig. 3.4. Local position vectors - and associated with edge n, and
-n

global position vector r.

II

II

II

sn--n, ormll

I A

Fig. 3.5. Normal components of and at edge n.
-n --n
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OBSERVATION TRIANGLE

SOURCE TRIANGLE

t3 4

/f2

A A 3

'At

0

Fig. 3.6. Local and global position vectors, edges of source triangle

T , and areas A1,t A 2, and A 3 used in defining area

coordinates.

, U 3 aa?9
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K.'

z

a-a

-Wo
2

I" - - o...gr-

1616 8 8 8 8 8 8 1616

Fig. 3.7. Triangulation of a slot centered at (x 0,0) for NA-19,

C
NNODE-22, NEDC-41, and NFACF-20.
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M

X77Hx

x 0.8--

.8REAL

x-0.4

-0.25 -0.250 0.125 0.25

-0.4 
1MAG.

- OUR RESULTS (NA a 19, NB 9)
X& RESULTS IN [5]

Fig. 3.8. The total x-directed magnetic current in a slot backed by an

unloaded wire of finite length with normal plane wave

incidence. La /X-0.5, Wa /X0.05 , Xc 0., d/X-0.25,

rB/X=O.O01, L/X-0.5, and Hioa=.1 ampere/meter. (X -1 meter)
" x
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-I

1.6

I1MAG.

.0.8

40.41

-0.25 -0.125 0 0.1A5 L .15
REAL

OUR RESULTS (NAz 19, NB 9)
X& ZRESULTS IN [5]

Fig. 3.9. The electric current on an unloaded wire of finite length

passing by a slot with normal plane wave incidence.
L a/X-0.5, V' /X-005, x ,-0., d/X-0.25, r B/ -O.O0l ,  T,/A-05,
a a c ( m

and Hi~a-1 ampere/meter. (X -1 meter)
X

.4

.'4.4 -" ". ' . ca , . '.'.'". " .'*:''""; "'' " ."" - ." " "-:"."' - ' +  ;
, - . * . * * * *.. 4**%*%'
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N .,-I

" IMAG.

/0.3

x Vx

-01
.5 0.2 0 .0502

OUR RESULTS (NA •19, NB 19 )
X ,& RESULTS IN [5]

Fig. 3.10. The electric current on an unloaded wire of finite length

passing by a slot with normal plane wave incidence.

:L aIA-0.5, W a/A-0-05, x -o., d/X-o.125, r B/X-0.001, L,/X-1.0,

and H Il ampere/meter. (X -1 meter)
x

r -- 0.5 -0.25,
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~100

0.10 X

.*w - 0.05 X .. x--- RE AL

x x

0

-0.5 -. 500.5 0.5X

IMAG.
A -0.05

-OUR RESULTS (NAx 19, NBr-24)
f X,& RESULTS IN [5)

Fig- 3.11. The electric current on an unloaded wire of finite length

passing by a slot with normal plane wave incidence.

L /X-1.0, W AX-0-05, x /X-Oo25, d/X-0.25, r B/X-0.O0l,

L/Xm1.O, and Hioa= ampere/meter. (X -1 meter)
x
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Chapter 4

APPLICATION TO THE PROBLEM OF AN INFINITELY LONO

WIRE BEHIND AN APERTURE OF ARBITRARY SIZE AND SHAPE

4.1-. Problem Specification

In this chapter, the wire considered in Chanter 3 is extended to

an infinitely long wire. The geometry of the wire and an aperture of

arbitrary size and shape is shown in Fig. 4.1. The excitation is a

plane wave incident from rerion a of Fig. 4.1, and is defined in

(3-1). The expansion functions and the matrices developed in Chapter 3

are modified to include the effect of the infinitely long wire. For

this, two exponential wave functions, in addition to the pulse

functions, are added to the expansion functions on the wire. The

objective is to obtain the current distributions in the aperture and

on the wire.

4.2. Expansion Functions

Since the aperture is arbitrarily sized and shaped, the expansion

functions for the aperture remain the same as those developed in

Chapter 3. It is noted that a transmission line without reflections
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is formed by the presence of the infinitely long wire and the

conducting plane. Therefore, the electric current on the wire

,t'* consists of two outwari traveling TEM currents plus evanescent

currents (higher order modes) existing in a finite region near the

aperture. We use pulse functions to represent the total current

(evanescent currents plus outward traveling TM,' currents) in this

finite region. We use two exponential wave functions to represent the

outward traveling TEM currents outside the finite region. This finite

region must be greater than the dimension of the aperture in the

z-direction. Therefore, the electric current expansion functions on

the wire are

J - u e jkz < z < L- (4-1)

SPi

J u P(z-z ) Iz <! , n'2,3,...,NB-1 (4-2)-n -z n2

jjk LNB = u e z eL< z < - (4-3)
-NB -z2

Here, P is the pulse function defined in (3-7) and L is the length of

the finite region. Each subsection in this finite region is of length

2N . Note that in order to include the outward traveling TEI

currents, the indexes in (4-2) are slightly changed from those of

(3-6).

*-S -'.. Itt~t*t.f
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4.3. MATRIX EVALUATION

It is noted that the magnetic current expansion functions for the

aperture and the electric current expansion functions for the finite

region of the wire are the same as those in Chapter 3. Therefore, the

corresponding elements of the matrices rya+y b, ia ib , and ibare

identical to those in (3-8), (3-34), and (3-35). The elements Z for
mn

m, n - 2, 3, ... , NB-1 are defined in (3-27), while the elements T
mn

- T for m - 1, 2,..., NA and n - 2, 3, ... , NB-I are defined in
nm

(3-33).

We now evaluate the matrix elements Z associated with the
mn

outward traveling TEM currents on the wire. By (B-17) and (B-i8), the

s-components of electric fields due to J plus its image J' --J and

J plus its image J*-J are
-"B -NB B

-JkE 4k(z+-) z- -L
2 .k j,'2 +  -jkrO

E -J V -1 - lz1-1 4 Trjwe -
r0  r0i ( 0

-jk(z4) 2+5- Jkr ()

r@ (r'_) 2 (r 1e

LLL

k- ) -- 
- -Jkr

-- [- , + - le 0) (4-5)

r t (r .) 2  (r-) 3

0 0 0

where
II

i

.. . . ...- _ ,• - .. . -..- - - - , •- - - , -. .• • -.. .,,.-,, ' ' '-. . '. ' ' - ' t* ' . _'''''



43

+L J 2 2
rO 0 2) 7 + r. (4-6)

+4 L 2 2(46
0 2

• <r'±- 2 (2) (4-7)

However it is noted that the charge densities associated with J-1

and J are-NB

•L
dJ~ j L

I -.. [jkejkz _ 6(z+ )e- ] (4-q1)-jwdz "3W

dJ -jkLNB ._. [_jke-Jkz , (z_ L-)e 2] (4-9)

-jwdz -j 2

The z-components of electric fiels due to point charges

[+6 (z;L/2)e -kL/
2 ],(-jw) plus their images are the terms involving

(r±)-2, (r±) 3 t (r " 2 , and (r O  3 in (4-4) and (4-5). To assure

the continuity of the total current on the wire, we first replace

delta functions 6(z+L/2) in (4-8) and (4-9) by pulse functions

P(z+L/2)/AI 0 over a small region Al.O . Then we replace the E due to. z

the point charges by the E due to these pulse functions. Al is

chosen, for simplicity, to be equal to 2a . Thus, (4-4) and (4-5)

become

-jkL -jkr; -jkr 0

-ke 2(e

E (J -- k.J'..."4... - * )+E (P ) (4-11)

z-B-l ,_rw r'e

44 
(



E (P ) f (4- )d,'
&' 47rjwcA1 as 2'+2 R

0

e 2___ f. ( *-jkr± e-jkr (412

4wrjwE:. 0 az P (')(w - - )d (12

is obtained from the second term of (3-24). R and R' are defined in

(3-25) and (3-26), and

- Bz -z) 2 (4-13)

re kL -- 2 (2 .
+ 2 *(2d-(4-14)

By (2-42), (4-1), (4-10), (4-2), (C-3), and (C-4), we have

Z ". kL[_*(OOr B) - i(0,O02d)) (4-15)

,w where is defined in (3-28). By (2-42), (4-3), (4-11), (4-12),

(C-3), and (C-4), we have

NB,NB 11 (4-16)

By (2-42), (4-3), (4-10), (4-t2), (C-5), and (C-6), ve obtain

e-JkL
Z NB, t " [..(LO,r ) - 4L,0,2d)]

+ -k I-Ci(ku )+ci( ku' 2)+ J[Si(ku )-Si(ku' )31 (4'17)2B, irW B
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where Ci and Si are defined in (C-7) and (C-9), and

2

By (2-42), (4-1), (4-11), (4-12), (C-5), and (C-6), we obtain

z - z (4-20)1,NB NB,1

Substituting (4-2), (4-10), and (4-12) into (2-42), we have

L

L r L

*i(z + 1,0,r - *(z +,O,2d)
M+ 2 B3 - yn+ 2

_ _(Z ' 1O,r1 ) (+ J(z +.L,0,2d)l m-2,3,...,N,-1 (4-21)

Substitution of (4-2), (4-1 1), and (4-12) into (2-42) gives

-JkL

Z e fjkAl[o,(z - _,0 r) -, ,izd 2d)]
m,NB jWe m 2 13 v' 2'

- ±P(Z 90y , + j~ ,02d)
mn+ 2 B - + 2

0,0,2d)l n-2,3,..,B-1 (4-22)

. . . . ..'! v - . . . .. --.-. ' -" "- -"', ."- ' " " .',- " , '~

790'r 1....4
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By (2-37), we have

.! z ml m2,3,...,NB-1 (4-23)ti m Zm

Z - Z N m-2,3,..., MB-1 (4-24)NB,m in,NB

The evaluation of the matrix [Z] is now complete.

AA

Finally, we evaluate Tml, TmNB, Tim, and T B3m for m 1 , 2,

... , NA as follows.

Substitution of (B-14) with z aL/2 and J--J into (3-30) gives
2--

-jkL
2jk -c+ c+

dl e x z +-
T z , m m 2
ml 47 C+)2 2  ,c+22. c L-1(xc+ 2 +d 4kx )2+d 2+(z,.+'

jk" x Cy)2 +d2+(z C+ +)2 c-

• (xc )2+d 2

m

.c-+ . -jk J(x-) 2+,2+ (z C-+ E)2in le m m 2e

- c- 2 2 c- L+J~m ) 2a %+

m - 1, 2, ..., NA (4-25)

where C± C± and.e mc x -, and z are defined in (3-30) and (3-32).

Similarly, substituting (B-4) with zML/2 and _J-.NB into (3-30),

we obtain

dl k ,.2 c+ c+ L

T Z xM "[m ",NB 4 (+ + 2 .m+ m
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J(xc+)2 2(c+ L 2 AC-

0 +d x

e + c-,2 2+d2

zc- L -jk (xc) 2 d 2 +(zC- )2
+ m - L2 ] e

, (xm )2"d +(zm -

m i, 2, ... , NA (4-26)

I and T NB,m' for m - 1,2,...,NA, can be obtained by (2-38).

By solving (2-14) and (2-15) with matrices evaluated above, we

can obtain the current distributions in the aperture and on the wire.

4.4. Numerical Results

In this section, numerical results for the magnetic current in

the aperture and the electric current on the wire are presented. To

ensure the validity of our formulation, we compare our numerical

results with those available in the literature for several examples.

Very good agreement is obtained.

The aperture of the first example is an electrically small

ellipse with major axis of length L -O.02X and minor axis of lengtha

W -O.002X. An infinitely long wire of radius rB-0.OO1X is located ataB

y-d, where d-O.15X, O.IOX, or O.05X. A plane wave with Hioa - -Jkz/n

ampere/meter is incident from region a of Fig. 4.1. Here, n- 7E. We

use two kinds of triangulations to model the aperture. Figure 4.2(a)

shows a triangulation with greater patch densities at the extremities

of both major and minor axes than in the center of the aperture.

" ," , - " ' ' . " " - , v . . . . . . - .
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Figure 4.2(b) shows the other triangulation which has greater patch

density only at the extremities of the major axis. In both figures,

NA, NNODE, NEDGE, and KFACE are the numbers of unkowns, nodes, edges,

and faces of the aperture, respectively. About the triangulations,

there are two things to be noticed. First, to compensaite for the loss

in the total area, we should put the boundary nodes outside the

aperture so that we pet the correct total aperture area. Second, to

take care of the edge effeit, we neel a hiher patch density around

the boundary than in the center. In fip. the h oundary nodes are

placed on the boundary of an ellipse that is 1 .010,4 times larger than

the actual one. That is, 1 .rc44 L . We compare our results from
* a

the two triangulations in Fi. 4.2 to illustrate the elge effect.

Table 4.1 shows that the amplitudes of' outward trqveling TF71 currents

on the wire agree very well with those obtained by using the formula

in lu. It also shows that the results (NA41) using the

triangulation of Fig. 4.2(a) have better agreement than those (NA17)

using that of Fig. 4.2(b).

The second example is for an electrically small circular aperture

of radius r Th.Oi s, backed by an infinitely lonop wire of radius

Aa

r iO.OO1X. The wire is at y=d=')-03X, 0.1)4X, 0.05X, or 10.06X. The

excitation in a plane wave with 1 j1.C i llus_0-ejkz he ete Fie

4.3 shows the triangulation used for the circular aperture. There is

a higher patch density aroun i the hounday than in the center. In

order to get the correct total aperture area, we use rin 0539r as the

radius for the triangulation. hable 4.2 shows that the amplitudes of

the outward traveling TET11 currents apree very well with those obtained

by using the formula in ecl. Por examples 1 ano n 2, our results also

oJrdu AO0. ace y a niiey o wr frdu

rB-O.O0 * .4.. . Th wir is at y%: O.0'>., 0.4 0*.S, or %'.0.%h
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agree with those of the formulas in [2] and [r3.

The third example is for a narrow slot which has length L -0.5X
a

and width W O.05X and is centered at (0,0,0). An infinitely long
a

wire of radius r =O.OOI is located at y=(]O.iX. A plane wave is

normally incident with I oa=l ampere/ meter. Figure 3.7 shows thex

triangulation used for the slot. Figures 4.4, 4.5, and 4.6,

respectively, show that the total x-directed magnetic current M in the

slot and the real and inaginsry parts of the electric current on the

wire agree very well with those in [41. Pi,ures A.5 and 4.6 show that

the evanescent current on the wire is concentrated in the region for

which lzI<O.25X. Beyond this reion, the currents aie two outward

traveling TEM waves. Therefore, the choice of L=2.OX used in our

calculation should be adequate.

Finally, we consider a circular aperture of radius r A0.i9 backedA

by an infinitely lonp wire. The wire has radius r 1=O.OOI and is
B

located at y-d=0.05-A. The excitation is a plane vave with
Sioa -jk
x -e /h ampere/meter. We use the triangulation shown in~x

* Fig. 4.3 for the aperture, where r =1 .1)53qrA  is the radius in the

patching. Figure 4.7 shows that the evanescent current on the wire

drops to zero rapidly, and can be neqlected beyond a small repion of

z-O.25X to 0.25X. Note that both the evanescent current and the

outward travelinp TFE, currents are discontinuous at z-0. The total

current is continuous everywhere along the wire. fnis inplies that

pulses must begin and end at z-0. The replacement of lelta functions

by pulse functions in Section 4.3 has assured continuity of the total

*li current on the wire. Figure A.9 shows the radial component of the
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magnetic current per unit length V crossing a circle of radius 5/6 rA

in the aperture. When V is positive, the current flows away from the

center of the aperture. When V is negative, the current flows toward

the center. It is seen that V is antisymmetric about the z-axis

(0-0.). There is no available data to compare with for this example.

In Figs. 4.7 and 4.8, 1 o( dntsioa at z-0).
x x

i ~ ~%* V:~ Y c :. .\~d .~~~
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Fig. 4.1. An infinitely long wire behind an aperture.
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6 6
I0 x.--Z,

III ~ (a)

(b)

Fig. 4.2. Trianpulations of an elliptical aperture. (a) NA-41,

flNODTE-28, NFOGE-61, and NFACk,-34. (b) NA-17, NNOflE-20,

HEDGEin37, and NFAC~iF8.
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Table 4.1. Amplitudes I and IN of outward traveling TF currents on

an infinitely long wire passing by a small elliptical

aperture. L /X-O.02, W I-0.002, r B /XO.0O1, anda a B

Hioa -Jkz /in ampere/meter. (X-1 meter)x

d/X Our Solution Solution of [I]*

NA NB 0X IB/lO 7  1,/io - 7 I O- 7

0.15 41 62 1.5 -0.0091-jO.1457 -0.0086-jO.13q3 -jO.1554 -jO.1474

17 62 1.5 -0.0086-jO.1391 -0.0087-jO.1391

0.10 41 62 1.5 -0.0077-jO.2358 -0.0072-jO.2254 -jO.2509 -jO.2380

17 62 1.5 -0.0072-jO.2251 -0.0072-jO.2251

0.05 41 62 1.5 -0.0078-jO.5401 -0.0069-jO.5162 -jO.5763 -jO.5476

17 62 1.5 -0.0072-jO.5153 -0.0072-jO.5153

* Nearly the same as the solutions by the formulas in [2] and [3].
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II

lk r

Fig. 4.3. Triangulation of' a circular aperture. 'IA.56, XXODE-'25,

NED(-64, and NFACT-4O.
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Table 4.2. Amplitudes I and I of outward traveling TE'1 NB

currents on an infinitely long wire passing by a

small circular aperture. r A-O.O1, x /X-0.001, and
A B

Hioa. -e'kz / 71 ampere/meter. (X-1- meter)
*, x

d/X Our Solution Solution of rI]

NA NB L/A 11 /10 - 6  /10 11 INB/10 - 6

0.03 56 22 0.3 -0.0070-jO.4943 -0.0024-jO.1682 -j0.5427 -j0.lR09

0.04 56 22 0.4 -0.0067-jO.3498 -0.0009-jO.1191 -jO.3803 -jO.t267

0.05 56 22 0.5 -0.0067-j0.2682 -0.0003-jO.0929 -j0.2895 -jO.0965

0.06 56 22 0.6 -0.0069-jO.2163 -0.0007-JO.0758 -J0.2321! -jO.0774

qN

.

4%' ' 2 '.•' ' .- ,, ,'- .- L ' -' ,''', ,. ' .- °



56

S M

REAL
: 0.6-

0.4-

0.2 /x
0 /

00 0.125 02

S!

-0.2-
1IMAG.

-0.4 xA OUR SOLUTION (NA 1I9, N8942, L/X .2.0)
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Fig. 4.4. T"e total x-directed magnetic current in a slot backed by

an infinitely lone wire for L /X-0.5, W /X-0.05, x -0.,
a a c

I/-O.O01, d/X0.1, and normnl plane wave incidence.

( A-1 meter)
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Fig. 4.5. The real part of the current on an infinitely long wire

passing by a slot for L /X-O.5, W1 /X-0.05, x -.
a a c

r B/X_()O*O1l, d/XinO.1, and normal plane wave incidence.

( 1metez)
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Fig. 4.6. The imaginary part of the current on an infinitely long

wire passing by a slot for L /X-0.5, W /X-0.05, x -0.,
a a c

SB/X-0.O01, d/X-0.1, and normal plane wave incidence.

(X -1 meter)
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S( o) (b)
4. 0.06

Cd) IMAG. (EVANESCENT)

0.04-- (b) IMAG. (TOTAL)

0.02 *-(a) REAL (TOTAL)

-i1 .o 1:

.0Cc) REAL (EVANESCENT)

-0.06

Fig. 4.7. The electric current on an infinitely long wire passing by

a circular aperture with plane wave incidence. r A/X-0.1,

d/X-0.05, rz/X-O.O01, and i - "c / A.'iqoeze/meter. (a)

Real part of total current. (b) Imaginary part of total

current. (c) Real part of evanescent current. (d)

Imaginary part of evanescent current. (NA-56, NB-62,

L/X'2., and X-1 meter)
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0.025I

I
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Fig. 4.8. The radial component of the magnetic current per unit

length crossing a circle of radius 516 rA in a circular

aperture backed by an infinitely long wire with plane wave

incidence. r A/X0.1, d/X-0.05, rB /X0.O01, and

Hioa. -e'-Jkz n ampere/meter. (NA-56, NB-62, L/XA2.0, andx

X=I meter)
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Chapter 5

APPLICATION TO THE PROBLEM OF AN ARBITRARILY LOADED

* WIRE BEHIND AN APERTURE OF ARBITRARY SIZE AYD SHAPE

5.1. Problem Specification

In this chapter, the problem is generalized to that of an

arbitrarily loaded wire passing by an aperture with excitations coming

from either one or both sides of the conducting plane. Figure 5.1

shows the geometric configuration of the problem to be considered. An

aperture-perforated infinite conducting plane of zero thickness covers

the entire x-z plane and separates regions a and h. In region a

(y < 0), the plane wave defined in (3-1) is incident at an angle (8 0
0

) .  In region b (y > 0), a z-directed thin wire of radius rB is

terminated by loads ZLl and ZL2 at z - -L w/2 and L w/2, respectively,

and is parallel to the conducting plane at a distance of d. There are

TR voltage sources and i applied across both ends of the wire.
1 2

The space is filled with a loss-free homogeneous medium of

permeability 11 and permittivity c.
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The generalization is to include the reflection effect caused by

the terminations of the wire into the moment method solution developed

in Chapter 4. The objective is to find the current distributions in

the aperture and on the wire. We then evaluate the power transmitted

through the aperture. In addition, an equivalent circuit of the

aperture for the transmission line mode on the wire is obtained. The

derivation of such an equivalent circuit is detailed in Appendix D.

Utilizing the circuit and transmission line equations, currents and

voltages of the TEM mode along an arbitrarily loaded wire can be

calculated.

5.2. Solution Development

As in Chapter 4, the presence of the aperture excites two outward

traveling TEM currents plus evanescent current on the wire. In

addition, there are reflections of these currents due to the

terminations of the wire. The wire is-assumed long enough that the

evanescent currents do not reach the terminations. Thus, the

reflections can be represented by two pure TEM current waves. The

situations at the terminations are shown in Fig. 5.2, where

(I Jkz INe'Jkzu and WIeJkB I+e-Jkz ) are the outward

traveling TEM currents and the pure TEM currents, respectively, and

the arrow denotes the direction of the propagation. The original

problem in Fig. 5.t is then equivalent to that in Fig. 5.3, where the

loads and the voltage sources are replaced by the pure TFN currents

Mnd 5.o"e _ travelin on an infinitely longwr.
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Here, I+ and I- are related to the voltage sources, the loads, and the

outward traveling TEM currents. The relationships are derived as

follows.

Referring to Fig. 5.2, the voltages at the terminations are

Z (I+eikz_.feik5 jkz V i - Z (i+e-jkz+i-eJkz+IleJkz (5-)

Z ( ,+ -jkz - jkz -jkz V i e Z(I+e-Jkz+I INBeJkz ) (5-2)
Z0(I • e +INBe ) L NB e

where Z is the characteristic impedance of the transmission line

formed by the wire and the ground plane.

At z-0, (5-1) and (5-2) become

,:

z < 0(I -I--1+ V - Z (I + I- + Id (5-3)

Z 0O(1 + I"+ I NB) V 2 + Z2 (1+ + I- + INB) (5-4)

Here, V and V are Vi and Vi referred to z-0, respectively. Z and
S1 2 1 2

Z2 are the impedances Z and Z referred to z-0, respectively.2.L. L2

By solving (5-3) and (5-4) for I+ and I-, we obtain

,"I+ "I+ + C I t + C2I1 (5-5)

0 1 2 2'B

I- + I (5-6)

-o 2 3INB
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where

(-r, )v r (I -r2 )v2
10- 22 (5-7)

-r I -2)v2  () v-8)

-r, r (5-9)

C2  -F (r2o

C -r 2  (5-11)3 l-r r2
3 -r F
r1  I Z (5-12)r, zI+: °

Z-Z0 
(5.13)r2 z2+Z o

r, and r2 are the reflection coefficients at ZsO" and 0%

respectively. Note, I and I- are infinite only when zMZ - -- or

Zi-Z 2 * The first case (Zz 2& -) does not exist for the loaded wire.

The second case (Zw-Z 2) occurs when the resistance of one of the

loads is negative or the resistances of both loads are zero. However,

usually the loads are passive and the sources are lossy. Thus, this

case does not arise. Therefore, I and I are finite •
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By (5-5) and (5-6), we have

+ + I + I + IzI< (5-14)

J - Ili+ + I + Iz< C (5-15)

-~ ~ -oO1N-NB

where

+ + e-jkz (5-16)
-0 0 R

_ e'a IzI< (5-17)

J -c IzI< 0(-18)

NB 2 Ie Z (5-18)

J- C eJkl zl< o (5-20)
A2

J - C ekzj IzI< 0(5-2)

We now consider the problem in Fig. 5.3. There are an equivalent

magnetic current sheet M over the aperture, the pure TEM currents, and

an induced electric current J on the wire due to M. We can use the

same expansion functions for M and J as those in Chapter 4. The

formulations and matrices developed in Chapter 4 can also be utilized

with some modifications.
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We now apply the boundary conditions stated in Section 2.2 to the

problem. The first condition that the tangential E is continuous at

the aperture is assured by the magnetic current sheets M and -M over

the two si~!es of the aperture region. Due to the additional pure TEN

currents, the second condition, (2-9), becomes

J4I +I J + +1 J ) H~ bJ j
It lI I I B-NB NB-NB -t : Oz

on A (5-22)

Here, J consists of two outward traveling TVN currents plus evanescent

current. The condition (2-10) remains the same because the tangential

E from a pure TEM current vanishes on the wire.

Therefore, the matrices [ya+Y!b, [Z]. tI, lia and ib
T~ an V remain

the same as those in Chapter 4 while [T] and Jib must be modified.

Note that here [T] is defined in (2r18) or (2-40) with J replaced by

J J+ +J and J by J +j +  j - , and Jib is defined as
-- 1 1 NB -NB -NRB --NB

I ib .( <MHb(J+j-)> (-3m -t= 0A(-3

We now modify the [T] matrix. By (2-40) and (5-22), the modified

matrix is the sum of the [T] due to J (same [T] developed in Chapter
4) plus additional terms Ta  and Ta  + t + an

ml mNB e0 1' !.Bl and B
for m-l,2,...,NA. The additional terms are

T a, <M 'HJJJ',') (5-24)
. A.m| -m -t -,-- 1 1 A ("
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T a +<,1( +-~ ')

m,NB -m -t -NB --WNB'-- NB'- NB A

where J'* and _ N are the images of J± and J respectively.
B -- NB

By [4, Eqs. (80), (83)] and (3-29), the tangential magnetic

4 ±jkzfield in the aperture due to a pure TRM current e u on the wire is
-Z

+ de Jkz"u (5-26)
27r(x 2+d 2)--

By (5-t7), (5-1-8), (5-20), (5-2i), and (5-26), we have

II(JJ~',')-2(CIf + C H+) (5-27)
t-t 1 1-0 2-0

H t ' 2(C H + C H + (5-28)

Substitution of (3-4), (5-27), and (5-28) into (5-24) and (5-25) gives

Ta I C T- + CT m i, 2,..., NA (5-29)

Ta " C T + C T ml,2,..., NA (5-30)
M,NB 2 m 3 m

where

±+jkz +jkzc "

dl -c+e x ̂ m
T±-+ m " --C + 2 5m.

2w (xm ) 2 d M, d

1 C±, xC± and zc + are defined in (3-30) and (3-32).
m *
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By (3-4), (5-16), (5-19), and (5-23), the mth element of the

source vector 1ib due to # and J f is

-o =

1ib .I+T- + f-T+ 12..N (5-32)
m Om Om

The evaluation of the matrices is now complete. By solving

(2-14) and (2-15) with the matrices evaluated above, the currents in

the aperture and on the loaded wire can be obtained.

The total current on the wire is

Mt =J+ j++ j- (5-33)

Thus, the total TEM currents at z-0- and 0+ are

ITEM a (i+C +C )I + (C +C)I + I + 1 (5-34)
TE 1 2 1 2 3 NB 0 0

I +M M (C +C )I + (*C +Cc )I + I0+ + IO  (5-35)
TE 1 2? 123 NB 0

It is noteworthy to verify that the problem considered in Chapter

4 is a special case here. The infinitely long wire considered in

Chapter 4 is equivalent to a loaded wire with Z -Z 2-z0  and VInV 2"0.

Thus, (5-5) - (5-13) give I =I -O. The current on the wire is then

reduced to that of Chapter 4.

Ile

t., o """"° "" " . " . ' 'e "

1 ....'% % . . . . v V "2 ,, . .:,'."..... - ' w,. ,.. .
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Finally, for a loaded wire whose length is very short, the

solution developed here may not apply. For this case, the method of

Chapter 3 can be utilized. However, the pulse functions on the wife

must be extended to the terminations. In addition, the impedance

matrix [Z] must be modified by adding a diagonal matrix with loads as

its diagonal elements corresponding to the terminations.

5.3. Power Transmitted through the Aperture

In this section, we derive the power transmitted through the

aperture into region a of Fig. 5.1 when the excitation is incident

from region b.

By [7, Eq.(1-57)], the complex power transmitted through the

aperture into region a is

- - ii (EaH u).u ydS

A

-I (u xE a).Ha dS
A

Mf.H a*(M)dS

NA NA

- V V J M Ha* (M )dS

m1i n1 A

NA NA

a VjVyaY
n -n

Mai nai
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*1 - (5-36)

where " * " denotes complex conjugate. In (5-36), the vector identity

(A3x). S - (xA)B, (2-1) with n-u , (2-11), and (2-6) are used. The

time-average power Pt transmitted through the aperture is given by the

4 a
real part of Pf.

5.4. Evaluation of an Equivalent Circuit

In this section, an equivalent circuit at z-0 of the aperture for

the transmission line mode on the wire is presented. For simplicity,

a plane wave incident from region a of Fig. 5.1 is the only

excitation. Using this circuit, we can obtain the TEN currents and

voltages on the wire.

The derivation of the equivalent circuit is detailed in Appendix

D. In Appendix D, the solution for the current on a wire with matched

loads (or infinitely long wire) is utilized to evaluate the impedances

and sources of the circuit. We therefore consider the wire as

infinitely long.

The general T network is shown in Fig. D.5. The impedances Ze

Z 2 , and Ze defined in (D-21) - (D-23) depend on ZO, It I NB' I1, and

NB" Here, (t ,i ) and (I ,I NB) are the amplitudes of outward* NE (I NEB) N

traveling TEN currents in the -z and the +z directions on the wire

when the original incidence is replaced by TEM current excitations

e-jks and ejk Z applied to the wire, respectively. The sources Ve

J,,....
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and V2 in (D-24) and (D-25) depend on O  Z., e .e e, and I 1

and INB are the amplitudes of outward traveling TEN currents in the -z

and the z directions on the wire, respectively, when the excitation

is the original incident field.

If the aperture is symmetric about z-0 or is small, the network

in Fig. D.7 is used. The impedances Zs and Za and sources V5 and Va

defined in (D-28) - (D-31) depend on ZO , I V ,NB, I, and I.

If the aperture induces symmetric outward traveling TEN currents

on the wire, the network in Fig. D.8 with impedance Ze in (D-32) and

e n
source V in (D-33) is utilized. The network depends on Z0, I,, and

I.

If the aperture induces antisymmetric outward traveling TEN

currents on the wire, the network in Fig. D.9 with impedance Za in

(D-34) and source Va in (D-35) is used. The network depends on

It, and I1.

1

To obtain the network, we first calculate the amplitudes of the

outward traveling TEN currents as follows.

To calculate (I ,f1 ), (i IN), and (I ,I ), we solve (2-14)
i, NB I NB 1 MB'

and (2-15) with the matrices [Y+y b], (ZI, IT], and Ffi evaluated in

Chapter 4 and with ib 0 for the current on the wire. For (I ,tt )
th ore etr ia ib += 1a-0=

the source vectors 1 0 and I defined in (5-32) with I and

are used. For (I,,INB), tiao and Iib defined in (5-32) with I =O and
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ow -"is jibmI0" are used. For (I ,IN), Iia defined in (3-35) and 0i -o are

used.

Next, we substitute these amplitudes and Z0 into the expressions

for the sources and impedances of the network.

5.5. Numerical Results

Numerical results for the current distributions in the aperture

and on the wire are presented in this section. Numerical results for

the power transmitted through the aperture are also given here. In

addition, we calculate the impedances and sources of the equivalent

circuit. The TEN current on the wire is then computed from this

circuit and compared with that obtained from the solution of Section

5.2.

The first example is for a slot of width W "O.05) and length L
a a

varying from 0.2X to 1.OX. A matched wire of radius rB-O.OOA is

located at y-d-.0 . A TEM voltage excitation with V -2Z volts and

V 2-0 is applied on the wire. Figure 5.4 shows that our solution for

the time-average power transmitted through the slot agrees very well

with that in [6]. It is seen that the maximum of the power occurs

when the length of the slot is about 0.46a, which is its resonant

length.

. ~. .~. % .c V,,%
% % %



Next, we consider a slot of length L -O5X and width W -O.05X
a aI: backed by a wire of radius r B-O.OOIX. The wire is located at various

positions from y-d-O.IX to 0.4. A plane wave is normally incident

4.., from region a of Fig. 5.1. Figure 3.7 with x -0. is used for the

triangulation of the slot. Figures 5.5 and 5.6 show the source and

impedance of the equivalent circuit (in Fig. D.R) of the transmission

line mode on the wire. Our solution agrees very well with that in

[4]. From this circuit, we can also calculate the TEM current at z-O

on the wire, by terminating the two ports of the circuit with ZI and

Z 2  This is shown in Fig. 5.7. The TRM current at z-O is equal to

the loop current I in Fig. 5.7. Table 5.1 gives the results for

d-O.IX and various loads. It shows that the results are (almost)

identical to those obtained by the solution in Section 5.2. They also

agree well with those in [6]. In addition, the results of the last

three cases show that the total TEM current at z-O is unchanged if the

sum of loads ZI and 2 remains unchanged.

1

. ,.°I
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INFINITE CONDUCTING PLANE

_ 2W

LOADED
W1 RE

4B

REGION a
Cy<O)

2 7r-(y>O)

x 
W

2

Fig. 5.1. A loaded wire passing by an aperture.
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a Uz

:Eeekkuz

+ +

-- w Lw
Z z:O Z =a >>

2 2

Fig. 5.2. A circuit for the terminations of the wire.
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z
INFINITE CONDUCTING

PLANE 2rS

REGO~o A APERTURE INFNITELY
H V,-INFNIEL

Hie ,,% \ I~e're M

40

REGION 
bA,(y<O) A

4 d

Fig. 5.3. The equivalence of the problem in Fig. 5.1. Arrows denote

Sthe propagation directions.
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x

x

I3 I0 -  _- X x x _

* -

%0

.-

0 - 4  _

i _ X OUR SOLUTION
- SOLUTION IN [6]

Io-[ 1i I I A I I - I I

0 0.5 1.0

Fig.5.4. The time-average power transmitted throup~h a slot backed by

a loaded wire with a TENM voltage applied on the wire.

W a /X-0.05, r B /X-O.04, d /X-00I, Vi-t2Zo, and V 2=0. (X-I

meter)

0.7
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V* (VOLT)

200-

IMAG.

0 d0 0.1 0.2 0.3 0.4 X

-100 x

REAL

-200-
X& OUR SOLUTION (NAI9)

SOLUTION IN14]

Fig. 5.5. Equivalent source for the TEM mode at z-O on an arbitrarily

loaded wire passing by a slot with normal plane wave

incidence. L /X -0.5, W /X 0.05, r /X -0.001 , and Hioa-1
a a X

ampete/meter. (xsi meter)
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ZO(OHM)

XZ OUR SOLUTION (NA- 19)
-SOLUTION IN [4]

0 .0 4 

1A G0.03

0.02 -ix

v' REAL

0.01 - xl

00.1 0.2 0.3 0.4

Fig. 5.6. Equivalent impedance for the TEM mode at z-0 on an

arbitrarily loaded wire passing by a slot with normal plane

wave incidence. La A -0.5, Wa A -0.O5, r A -.. 001 and

Hlioa-1 ampere/meter. (X-1 meter)
x

; : - ; - - ' -" ". " . .I. . ".".' , -"."
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iz

Fig. 5.7. The circuit used to calculate the TEM current at z-0 on a

wire terminated with loads Z Iand Z 2and passing by a slot.

~ -'S

oV



Table 5.1. Total TEM current at z-O on a loaded wire passing by a

slot with normal plane wave incidence. L /XO.5,
a

Wa/X -0.05, d/X -0.1, IA-0.00, and Hioa"
a B x

ampere/meter. (X-1 meter, NA-19, NB-62, and L / -1.5)

Reflections Solution of Calculated Solution
(5-34) or

rI  r2  (5-35) from Fig. 5.7 in [6]

0.1 0 0.2191-jO.0792 0.2192-jO.0792 0.2062-jO.0861

1.0 0 0 0 0

0.9 0 0.0287-j0.0129 0.0287-JO.0129 0.0264-jO.0136

0.81.82 0.8182 0.0287-jO.029 0.0287-jO.0129 0.0264-jO.0136

10.8750 0.6667 0.0287-jO.0129 0.0287-jO.0129 0.0264-jO.0136
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Chapter 6

CONCLUSION

A moment method solution for the problem of electromagnetic

coupling between an aperture and a conducting body is developed. Both

the aperture and the conducting body are arbitrarily sized and shaped.

This method is then implemented in specific cases whereby the

conducting body is a wire. The wire is finite-length unloaded,

infinitely long, or arbitrarily loaded. The aperture is modeled by

triangular patches, which can cmnform closely to any geometry and

permit greater patch densities on those portions where more resolution

is desired. Local position vectors are used as the expansion

functions in the aperture. There are two outward traveling TEN

currents and evanescent current on the infinitely long wire. The

evanescent current is found to exist in a small finite region near the

aperture. Numerical results show very good agreement with available

data in the literature.

Further work is recommended for more general proolems as follows.

First, consider the problem of a set of arbitrary apertures with a set

of parallel wires. Each wire can be finite-length unloaded,

infinitely long, or arbitrarily loaded and can be in different media.

One can use the came expansion functions as those developed in this
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work for each aperture and each wire. The matrices in (2-14) and

(2-45) must be modified to include the coupling among apertures and

wires. In addition, different permeabilities and permittivities must

be included in the matrices. By solving (2-14) and (2-t5), the

currents in the apertures and on the wires can be obtained.

The problem of a set of arbitrary apertures with a set of

arbitrary conducting bodies can also be done. To solve this problem,

one can use the formulation developed in Chapter 2 and the matrix

equations (2-14) and (2-15). Triangular patching is recommended to

model apertures and conducting bodies. Local position vectors can be

used as expansion functions * The work may be complicated, but it can

be done without too much difficulty.
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APPENDIX A

SURFACE INTEGRATIONS FOR FIELD PROBLEM.

In this appendix, we evaluate the following surface integrals:

JR

I I-T1

Rdek dndy (A-2)

nl-o E-0

1 1-n

In d Rne akRdC M (A-3)

n-O F O

Here, RJL-_rr' I is the distance between a source point at r' in

triangle T and an observation point at r. The area coordinates of

triangle T are & and n defined in (3-i1) and (3-$2).

To avoid the singularity of these integrals at rr', we rewrite

(A-1) - (A-3) as

1 i-n I I -n

I-- dd + d dn (A-4)
n- 0 -o n-o C-O
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I I I -i t -jkn

n-O --O nao0 -O

I I -n I I

Ir fT) J f J , e 1JR d~dfl + -af. dE dr, (A-6)
n- coo ) WoO E o

The first terms of (A-4) - (A-6) can be approximated by using a

seven-point Gaussian quadrature formula developed for a triangular

region [1.6]. The formula is

(fo g(zT)d~d wa) (A-7)

Here, g is the integrand, ( i )is a point in triangle T, wi is the

weight, and a is the coefficient. They arei

wiWO. 5 iJ= ,29.•• •,7

a -0.225

a 2a 3a 40.1323942

a =a 6 a 7-O.259392

C nI -0.333333 (A-8)

2" r-o05971587
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F; -r en2-n4-0.47014206

E5= -60.7974269

E 6=E7 -n 70.1012865

To evaluate the second terms of (A-4) - (A-6), we first introduce

some vectors and variables as shown in Fig. A.I. 0 denotes the origin

of the global coordinates. p is the projection of r'-r onto the plane

of the triangle T. The distance between the observation point and the

plane of the triangle T is d. The contour along the boundary of T

is defined as C, which is the sum of three straight lines CI, C2 , and

C along the edges of the triangle. u, , and u are the outward

unit vectors normal to each edge. Point P denotes the projection of

the observation point onto T. For edge i (i-,2,3), P and P are

the vectors from point P to a point on C and to the projection of the
i

observation point onto line Ci, respectively. The unit vectors of P

and Po, are u and u . Point 0 denotes the projection of point 0-pi "Poi

onto line C i  Variable 1 is the length measured from point Q to a

point on C and is in the direction of a unit vector uli. This unit

vector is in the direction of the boundary contour of triangle T along

edge C i  The end points of Ci and the projection of the observation

point onto Ct are at li-1 t , 1t , and lo, respectively.

We now evaluate the second term of (A-4), which can be written by

using (3-16) as

T
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where A is the area of the triangle T. (A-9) has been evaluated in0

[-7] and is summarized as follows.

We use the surface divergence theorem F181

v .fdS- f.udl (A-10)

S C

to transform the integral in (A-9) into a line integral. In (A-tO), S

is the area of integration, C the boundary, and u the unit outward

vector normal to C. It is found that a function

(P) P P A-ti)

satisfies

V' "f(p) % (A-12)

where up is the unit vector in the p direction, and V * is the' -S

surface divergence with respect to the coordinates of r'.

By (A-11) and (A-12), we can evaluate (A-9) using the formula in

(A-10). However, note that application of (A-tO) requires the

continuous differentiability of the integrand on the domain of

integration, S. This is not the case when P is in S or on C.

Therefore, a region T., defined as the intersection with T of an

infinitesimal sphere with radius c centered at P, is isolated for

separate treatment. The boundary of T is defined as C, and c(r) is

A.A
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the angular extent of C Eabout P. The region of T excluding T. is

T-T Cand the corresponding contour is defined as C-CE* Thus, (A-9)

is rewritten as

liim I dS' a +rr dS' (A- 11)
0 -r

E-O T-T CT C

The second integral in (A-+3) is

lrn ct(r) (4C *d - Idi1) - 0

By (A-to) - (A-14), we have

-lim JJ V I .( 1- I 0 L) dS'

C-O T-TC

r-r'Iilim 7  J -

£40O C-C

ulie u~j. [ -- u udl - E+dE

C-OC CE

3

*u dl.. - a~)d](A-45)2A J -P i-
0i

jim C

Here, a(r) can be written as

3 A1 l
-(L a iooq(tan' i tan-~ I i) (A-t6)

Poi. Poi
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where +
A -  1-- i-1,2,3 (A-17)

i i oi

This can be verified by the values of a(r),

0, if P is exterior to triangle T.

2w, if P is interior to T.

a(r) =  7, if P is on C but not at a node of T. (A-18)

a i if P is at node i with interior angle ai of T.

When the source point in Fig. A.A is on line C., we have
1

I 2+ d 2  (A-19)

P 2 P2d2 P21 pT-'

U u u -u (A-20)-ni --i £-Poi -i
2= 1

2 ( Po)2 + (1-1 )2 (A-21)
P, oi i oi

By (A-19) - (A-21) and [t9, Eqs. (200.0), (387)], we have

u ifn -
Pi -Pi -i i R-+Al-

Ci

+-.(tan - tan-  AI2)
Poi p Ru +d R A-2oi i oi i

where

.,.,...5'... .... > ', . ....
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±)2 -23)R+ i " +(Poi)2+(Ali) (A-)

Substitution of (A-16) and (A-22) into (A-15) gives

3 + 4

2A *1 1 P o i 0i ,R.+Al;

0 Al +  P, Al-

Idl(tan-' oi i oi.r2IddR d2+P2i+IdIR, (A-24)

, In (A-24),

I n n (A - B) , t a n A - t a n B 
( A -2 5 )

1 *tanA tanB

is used.

There are four things to be noted about (A-24): (1) when po0,

the In term vanishes, (2) when p o 0, the arguments R!+A,! of the In
oii i

term are positive, (3) when d-0, the tan- 1 terms vanish, and (4) when

d 0, the arguments of tan" are finite (i.e., d 2 p 2ldiR > 0). In

addition, (A-24) can be applied to any surface with multiple edges.

If there are N edges, the summation index i is up to N.

Finally, we consider the second terms of (A-5) and (A-6). They

have been evaluated in [12, Appendix C1 in terms of the value of I1

defined in (A-9) by using [19, Eqs. (380.011), (380.201)1. The

results are

k or
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f f dE dn 4B(J 1-1 )-2E(J 3-J )-(BC-ED)I

nS E- ( jRl 1 2 B- 2 (A-26)

f d n 4A(J 3-J )-2EF(J 1-J 2-(2AN-EC)I (-7J ) U U I4AB- 
2  ( - 7

n-o E-0

vhere

A - -2r I )( 2-

C o -2(r-r )-(r -r)
-1 -- I

E6~ - 2(r -r )-(r rz

F - r-1 2

- (2B-C.D-E) BiDF.(2A+C-D-E)4XA+-TF 
(A-28)

4(A+13-F)

+4(A.C) (B.D.F)+4F(B-C-E)-(C.D.E) 
2

inj 2J!A+B-E)(B+DF(2B-C+D-E)
2J'A+B-E)(A.C.F)-(2A.C-D-E)i

-(2B+D) BD+F-DrFW 4BF-D 2 lj, -BDF B2 B8B47 2,MP.D

3 ~ 4(A.-E)
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*4(A4C) (B+D.F)+4F(B-c-E)-(C.D+E) 2

8( A.3-E) 3 1

inI2 CABE)(+F)+(2A+C-D-E)

12 J(A.-E)(B;D+F)-(2B-C.D-E) I

44A 8A4AW 24A-+C

Here, z I, 12, and r1 are defined in Fie. 3.6.

The evaluations of the integrals in (A-1) -(A-3) are now

complete.
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POINT

I rI

9'

. Fig. A.t. Geometrical quantities associated with an observation

point, a source point, and edges of source triangle T.

+ I
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.
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APPENDIX B

ELECTRIC AND MAGNETIC FIELDS DUE TO OUTWARD TRAVELIgG TEN CURRENTS

Here, we derive fields due to two outward traveling TEM currents

starting from -zI. and -z2 and traveling to infinity in the z and the

-z directions, respectively. The currents are defined as

S+-a e'jkz 0 < . <z<- (B-)

f kz -- < z < -Z < 0 (B-2)

We first evaluate the t-component of the magnetic field due to J+

at a point (P, ,z) as follows.

U ap
& -jk(r.s')

47 F a( )dz'
4w ap r
z I

-Jkz 0
7r -e'}(r s"))dz, ,  (B-3)

0

-Jkz L
e 1 i (.ik pp4 - 7-"ra -e.jk(r+z")dz'

L-.o 0
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e-Jks 1  6-Jk(r+z") z"-L

4T L 0 r(r.z "z1  - Z'z M

-jk~r *L) -jkr

p.~ ~ 1 r0.z. 1 . L rz.~)

41r Vo rL (r L+Lz I-Z) r (r) 2 (z- ))

-j kr 
L )z 1

r

li L - z -j k r Lw (Io +'- )e.1 ) 003 4

rL Lp(zz rI 0z"0

0 + +I~e 0(B-4)

rr

Zo 0 1- (B-6)

2 P,~ -(-i ) 2B-2

r L-L..-z

Li rL 3-0
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are used on the last step.

Similarly, the *-component of the magnetic field due to J" can

be obtained as follows.

R A Z(J'

-- v a p

" - Jk f (" )dz- 47r 3P,

-- * - -p - j . ()dz" (B-il)

r
0

where

Z" -(z'z) (B-12)

O--.p2,(,... T) . -[.(,,,2).z.. ]2 (B-,13)

Comparing (B-11) with (B-3) and (B-13) with (B-5), we can obtain
-Jks 2  -jkz

H*(J_) by substituting e for e and -(z+z ) for (z-z ) into

(B-4). The field is

...Jkz2  - --
H 4J--( (B-14)

where

r; 01 ° 2"("+2 ) 2 (B-15)
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The s-components of electric fields due to J and J" are then

obtained by the equation

Substituting (B-4) and (B-14), respectively, into (B-16), we obtain

+ -Jkz ik +k(z-z )
E() Li [ .. + . -_l,] 0 (B-17)

r+ (r)2  (r°)

-Jkz2  .k Jk(z4z z+z -Jkr

S.(-). e [._ _ .) - 21 0
2 " C ro (o) 2  -(r-)2 (r-"3

0 ~00
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APPENDIX C

DERIVATIONS OF INTEGRAL FORMULATIONS USED IN CHAPTER 4

The integral formulations used in Chapter 4 are listed as follows

and proved later in this appendix.

0do2 2

.-.jk( z+P 42, J jk(,,, d

0

- -Ci(kp)-[! -Si(k P) ] (C-i)

a 0

-Jk(JT+p + ) ,a_-jk( +p.,)

0 -a

- Ci(ku )-Ci(kp)-J(Si(ku )-Si(kP)] (C-2)

-a

r~ a)24.lP2 6) 2,02-)as..,,, + "- -7.)
f z 4,-PF fz+a) 

2+P2

- e'Jka,Cj(kp)-J[j -Si(kp)1l (C-3)

% ' - . ' . + - .",- , , ."'
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asik~ J _________ dz'ilds

a l0

frk -jk (z+a-z)
2 2

ek ~- dz']Ids

Al 0

22 0 22

a Zj(s+a) +p di (z-a) p d

eikaf Ci(ku ).J[Si(ku )XL1 (c-5)
2 2 2

eI ____________ dz'lIdz

f j l(z.a

0

-a

ejkz 9 P(Z.)eii (z-a-' )2 p2  zId

Here,
co

Ci(x) *os - S!du f u (C-7)

IAx

a.. ll'z
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Si(x) - x sinU du (C-8)

0

ut aj P (c-9)

2 2a+J(2a)+P 2  (c-1o)

-jk(z.. -z.)2+02

(z-,o.P) '-J P(Z')O- )dz' (c-i,)0 (zl-.),oz

P is a pulse function over a very small region Alo, and p> 0.

We now start to prove (C-t). Letting

u- 2k2 P+) (c-12)

we have

du * k(--,+= )dz (C-13)du -Z+P

Substitution of (C-12) and (C-t3) into the left-hand side of (C-i)

gives

40 j O 00kP

J2:--du - f 2 !du -j[ J 5ifu- Jindf °u u f s- u f n u ]

kp kP 0 0

- -Ci (k) - J(I - si ( )]

Thus, (C-1) is proved.

- - *:,. ., ;,, ...* V ,-.-. , • .-- .-, ~ .-....,'.'...:-..'. .. .',.-.''.- ..'- ".. -. . .':.;- -",.,,, '.;:,, :." ,,,
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The left-hand side of (C-2) can be rewritten as

g jk( - +z2 +Z) jk ++z
a2- 

(C-14)Z2+ JZ +
0 a

By (C-12) and (C-13), we have

jk(4 +z) r--I dz 0 0 5-- du j[ s'nududf- J - j

a ku 0
d

ku

0

- - Ci(ku ) - j[L- Si(ku )J (C-15)
1 2

Using (C-i), (C-14), and (C-19), we obtain the right-hand side of

(c-2).

Replacing z by z'+a in the left-hand side of (C-3) and using

(C-i), we obtain the right-hand side of (C-3).

The left-hand side of (C-4) is equal to

re-jkz e J k I z -a_ z )2+j)2 z = 4

f J(-,.--a-,, P +'
Al0  z-a

+ lk 00 e 'jkz" ... .f _a ' -+--
* ) -dz'dz

f J(z-a-z +~P
a Al 0

The first term equals
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-47rAl 0e'Jka !(O, 0, P)

Approximating the integral with respect to z' in the second term by

the product of Al0 and the integrand at z'-O, and then using (C-3), we

have the second term equal to

jk O 0e-jka, -Ci ( k )-j1'i -Si (k P) ]

We thus complete the derivation of (C-4).

Replacing z by z-a in the left-hand side of (C-5) and using

(C-1) and (C-2) with a replaced by 2a, we obtain the right-hand side

of (C-5).

Finally, using the same procedures as those in deriving (C-4) and

(C-5), we obtain (C-6).

44 . , ' - ., , - -, .,-' O' 'I . % -' ° ' '. . '



APPENDIX D

EQUIVALENT CIRCUIT OF THE APERTURE

FOR THE TRANSMISSION LINE MODE ON A LOADED WIRE

In this appendix, we derive formulations for an equivalent

circuit of the aperture for the transmission line mode at z-o on a

wire. The wire is in the z-direction, terminated with arbitrary

loads, and parallel to an aperture-perforated infinite conducting

plane. The aperture is arbitrarily sized and shaped and is centered

at SaO. Incident fields come from either one or both sides of the

conducting plane. This circuit can be utilized to calculate the TEN

currents and voltages on the wire.

It is known that an equivalent circuit of a wire passing by an

aperture is a two-port network as shown in Fig. D.i. The parameters

[Ze I depend only on the geometry of the problem. They can be obtained

by removing the incident fields from the system and applying

mathematically arbitrary excitations to the transmission line formed

by the wire and the conducting plane. The sources Ve and Ve can be
1 2

obtained from the incident fields and [Zel. In order to find the

equivalent circuit, the solution for the current on an infinitely long

wire (or a matched wire with the characteristic impedance Z ) is

needed. Therefore, we now consider the wire as infinitely long.
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(A) Network Parameters

To obtain the elements of [Zel, we use the definitions

11 i+ 1 2  2

v Ze + Ze i (D-2)
2 21 1 22 2

where i, i2, v1, and v2 are port currents and voltages at port I

(s'0) and port 2 (z-O+), respectively, with reference directions

shown in Fig. D.2.

To represent an excitation, we mathematically apply a TEN current

wave I+ei kZu to the transmission line. I+ is an arbitrary constant.

This excitation will induce an equivalent magnetic current sheet in

the aperture. The magnetic current sheet then excites two outward

traveling TEM currents" I eJk and I NBekZuz traveling on both

semi-infinite halves of the wire . It also excites evanescent current

on the wire in the vicinity of the aperture. Figure D.3 shows the

propagation directions of the excitation and the outward traveling TEN

currents.

Combining Figs. D.2 and D.3, we obtain port currents i and 2

and port voltages 1I and v 2 They are

+ 2D
i I - 1(D-))
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1 2 . INB) (D-4)

v I Z 0 (1 ) (D-5)

- z 0 ( I'IB) (D-6)

Here, Z o6Oln(2d/r ) is the characteristic impedance of the

transmission line, d is the distance of the wire to the conducting

plane, and rB is the radius of the wire. Since [Ze] is independent of

the excitation, (D-4) and (D-2) hold for the port currents and

voltages defined in (D-3) - (D-6). That is,

v -azel ,e4 (D-7)

92 Z 2 I + Z222 (D-8)

To solve for [Ze], two more equations relatinp the port currents

and voltages to [Ze] are needed, in addition to (D-7) and (D-8). One

can apply a TPTN current excitation I'eJkZz U to the wire. Again, the

aperture excites two outward traveling currents I e and

I NBe 'k traveling on both semi-infinite halves of the wire, as

shown in Fig. D.4. The port currents and voltages for this case can

be obtained by combining Figs. D.2 and D.4, giving

A I
I- + I(D-9)
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2 + RB 
(D-iO)

vI * Z (i + (D-It)

A

- (I -0 () (D-12)

Similar to (D-7) and (D-8), we have a pair of equations relating these

port currents and voltages to [ze]. They are

v- + Z1 i 2  (D-t3)

- + Z2t (D- 4)
12 z21 1 2212 (-4

For simplicity, I+ and I- are chosen to be the constant t. Thus,

(D-3) - (D-14) give

AAz -B [( ~ I I )+('-I I)(i+i Y1B 11 (D- 1-)

A

Ze  a 2(1.1)F (F-6)
121

Ze a 2(1,1 )F21

where
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Z

F- (D-19)
1 I(14 N)-('+f NB NB )

By the reciprocity theorem [7, Sec. 3-8], we have

• = e (D-20)12 21

The network is then equivalent to a T network as shown in

Fig. D.5, where the impedances are, as obtained by using (D-15) -

(D-20),

NA

Ze e - 2 - )IF (D-201 " 11"z12 [(".1 1B )( J1B ] D-1

Z; e Ze ze, - 2(1+. )F (D-22)
42 12 21 NB

z~ e - ((t~y)(-i .(. )t. ] (D-23)
3 2221 TO~ NB 1

e an V

(B) Sources V and Vr

If both ports of Fig. D.-5 are terminated with matched loads, as

shown in Fig. D.6, the network corresponds to our original problem.

The original incident fields induce two outward traveling TEN currents

I1ejkz- and reJjk on the wire. The locp currents i and i in

fig. D. are equal to 1 and -INB' respectively. Thus, Fig. D.6 gives

, ' ., , ; '4 ,r, ,,, :, " v <v. * ... 4,; .. . ;' ,'- ,.-. . ', . *' :, ;,
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the sources,

• - -(z *z- z)I .z (D-24)
1 0 1 2 1 2N

- (Zo Z2*ze )IN -ZIl (D-25)

Note that Za, Z , Z, V, and e are proportional to Z0. Hence, they
1  2 3 1 2

can be normalized by Z. The equivalent network is now obtained.

If the aperture is symmetric about z-0 or is small, then

A

I - (D-26)I NB

~NB 1 (-7

By (D-21) - (D-27), the network is reduced to the symmetric T

network shown in Pig. D.7 where the impedances and sources are

AA

-(I I. )Z
Z. -B (D-28)

24 1NB

Z" = (D-29)
2 I fX )(24 4 +f)

Via -(:ZO*Z i +Z2 ) I1 Z8 NB (D-30)

V* (zoZ Z'z)IB-Z I (D-31)
2 0 1 2 NB 2

*~~~~~~~ N*~ .* ~ - ...
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For the case when the outward traveling TEM currents are

A ^

symmetric about z-0 (I *r , I.,AI r) Za in (D-29) is infinite and
NBP3 NB 2

the equivalent network in Fig. D.7 can be reduced to that in Fig. D.8

with the impedance and source defined as

A

ze (D-32)
1+I

v a -II (2Z 0 + Z) (D-33)

They agree with those in [4] where the symmetric case was considered.

An example of this case is a narrow slot whose axis is perpendicular

to the wire. This is expected because the magnetic current in the

slot is equivalent to a superposition of magnetic dipoles which

produce symmetric currents on the wire.

For the case when the outward traveling TRN currents are

antisymmetric about zs ( 0-r , I 0--I ), Zs in (D-28) vanishes and
IIB I NB I

the network in Fig. D.7 is reduced to that in Fip. D.9, where the

impedance and the source are

,, (D-34)

va - -(Z0 +2ZO')I, (D-35)
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An example of this case is a small loop aperture. The .agnetic

current in the aperture is equivalent to an electric dipole which

points normal to the wire and produces antisymmetric currents on the

wire.



1 011

z a 0 -  Z a0

Fig. DAt. A two-poit equivalent circuit.

4 ' 0 +
I zI VP

Z 0 Z 0+

Fig. D.2. Reference directions for i and v.

zaO
I A -

][ 1 4lkx

' ' Ilejkz

Fig. D.-3. A TEN current excitation I+e'ikE produces outward

traveling TEN currents I e J k z L, and eNBe'Jka.
Z adIMBjk
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IND

bjkzz

traveling TFX currents ie jk and I -JrI NB A

V 0

Z2=0- Z r0

Fig. D-5. An equivalent T network.

VOa

Fig. D.6. Equivalent circuit for the calculation of Ve and V
2
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S SI V

g+

z 30- z8.0+

0 0

z:O Z z.O

Fig. D.8. Equivalent circuit for the case when the aperture induces

symmetric outward traveling TEX currents on the wire.

V V

I I

I I
I I

Z ' a 0-0OI I
Z= O -  z-O

Fig. D.9. Equivalent circuit for the case when the aperture induces

antisymmetric outward traveling TEN cuirents on the wire.

! !

*I 9 * ? qi*. . . ** * * * * * -
I .II * * *~
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